2024 年度电化学储能电站 行业统计数据

2025年3月

目 录

	、电动	占装机情况	1
	(-)	整体装机情况	1
	(二)	应用场景分布情况	2
	(三)	储能时长情况	3
	(四)	区域分布情况	4
	(五)	企业分布情况	5
	(六)	电站规模分布情况	6
	(七)	接网电压等级	6
	(人)	电池类型分布情况	7
	(九)	主要设备厂商分布情况	8
_	、电动	占电力电量情况	8
	(-)	整体电力电量情况	8
	(_)	应用场景电力电量情况	9
	(三)	区域电力电量情况1	1
Ξ	、电动	占能效情况1	3
	(-)	整体能效情况1	3
	(_)	区域能效情况1	3
	(三)	各投运年限能效情况1	4
四	、电动	占可靠性情况1·	4

五、	行业	对标忆	青况.			 	• • •	 		• • •	. 15
(-	一)	新能源	東配储	对标	情况	 		 	• • •		. 16
(.	二),	火电西	2储对	标情	况	 		 	• • •		. 17
(.	三)	独立储	皆能对	标情	况	 		 	• • •		. 17
()	四).	工商业	2配储	对标	情况	 		 	• • •		. 18
后	记.					 		 			. 19

一、电站装机情况

(一)整体装机情况

2024年¹,电化学储能²呈稳步增长态势,全国电力安全生产委员会 20 家企业成员单位新增投运电站 515座、总装机 37.13GW/90.51GWh、同比增长超 100%,相当于全国电源新增装机的 8.57%,相当于新能源新增装机的 10.22%³。截至2024年底,累计投运电站 1473座、总装机62.13GW/141.37GWh(在运 1373座、总装机61.55GW/140.22GWh,停用 100座、总装机 0.58GW/1.15GWh),相当于全国电源总装机的 1.86%,相当于新能源总装机的 4.27%,在建电站 227座、总装机 8.99GW/18.12GWh。

图 1-1 电化学储能近 5 年发展情况

¹ 电源侧、电网侧数据来源于全国电力安全生产委员会 20 家企业成员单位,在国内投资或使用或运维的电化学储能电站,以及接入国家电网、南方电网的部分电化学储能电站,用户侧数据来源于中国电力企业联合会电动交通与储能分会收集数据。

²⁰ 家成员单位包括: 国家电网有限公司、中国南方电网有限责任公司、中国华能集团有限公司、中国大唐集团有限公司、中国华电集团有限公司、国家电力投资集团公司、中国电力建设集团有限公司、中国能源建设集团有限公司、中国核工业集团有限公司、中国长江三峡集团有限公司、国家开发投资集团有限公司、国家能源投资集团有限责任公司、中国安能建设集团有限公司、中国广核集团有限公司、华润电力控股有限公司、浙江省能源集团有限公司、广东省能源集团有限公司、北京能源集团有限去司、内蒙古电力(集团)有限责任公司、中国中煤能源集团有限公司。

² 电化学储能为电能存储采用电化学储能介质的储能,包括锂离子电池储能、铅酸/铅炭电池储能、液流电池储能、钠离子电池储能、钠硫电池储能等。

³ 相当于新能源装机比例不含用户侧储能及电源侧火电配储装机。

(二)应用场景分布情况

独立储能增长最为迅猛,2024年新增装机23.22GW,同比增长150%以上,占新增总装机的63%;其次为新能源配储,新增装机13.10GW,同比增长58%。

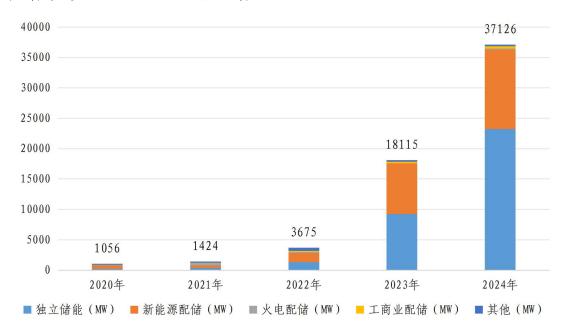


图 1-2 近 5 年电化学储能主要应用场景新增情况

截至 2024 年底,电源侧、电网侧、用户侧电化学储能装机占比分别为 41.22%、57.01%、1.77%,主要应用场景为独立储能和新能源配储,合计占比 95%。其中,**独立储能**累计投运总装机 34.58GW,主要分布在山东、江苏、宁夏、湖南、内蒙古等省份,总装机均在 2GW 以上; 新能源配储累计投运总装机 24.23GW,主要分布在新疆、内蒙古、甘肃、河北、山东等省份,总装机均在 1GW 以上。

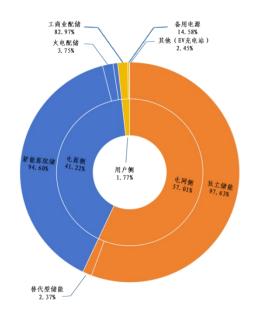


图 1-3 电化学储能应用场景分布情况

(三)储能时长情况

整体来看,2h储能系统应用较为广泛,截至2024年底,储能时长为2h的电化学储能总能量94.59GWh,占比66.91%。

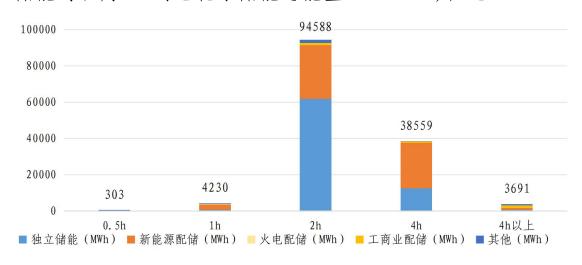


图 1-4 电化学储能储能时长分布情况

从应用场景看,独立储能主要储能时长为 2h,占独立储能总能量的 82.03%;新能源配储主要储能时长为 2h、4h,合计占新能源配储总能量的 93.13%;火电配储主要储能时长为 1h 及以下,占火电配储总能量的 96.98%;工商业配储主要储能时长为 2h 及以上,合计占工商业配储总能量的 99.36%。

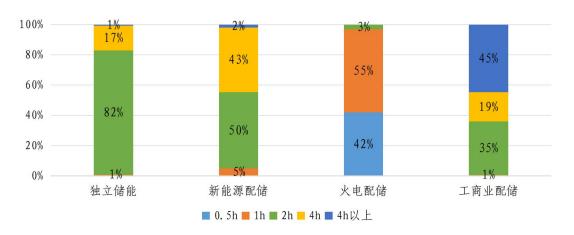


图 1-5 电化学储能典型应用场景储能时长分布情况

(四)区域分布情况

2024年,新增投运的电化学储能电站分布在28个省份, 新增投运总装机排名前十的省份依次是:新疆、内蒙古、江 苏、山东、河北、浙江、宁夏、广西、广东、河南,总装机 30.05GW、占比80.95%。

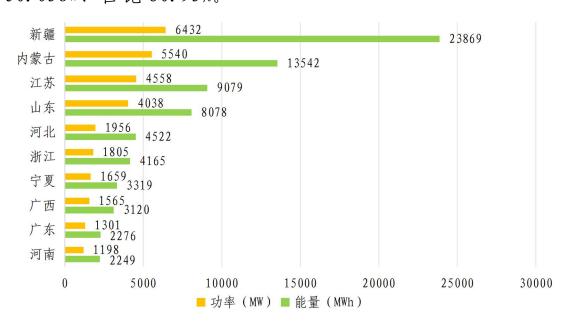


图 1-6 电化学储能电站新增总装机排名前十的省份

截至 2024 年底, 17 个省份累计投运总装机均超 1GW, 其中新疆、内蒙古、山东、江苏 4 个省份总装机达 5GW 以上, 宁夏、甘肃、湖南、河北、安徽、广西、浙江、广东 8 个省

份总装机已超 2GW。

图 1-7 电化学储能电站累计总装机排名前十的省份

(五) 企业分布情况

2024年,电网企业⁴新增总装机 0.33GW、占比 0.88%, 五大发电集团⁵新增总装机 5.87GW、占比 15.81%,其他企业 单位新增总装机 30.93GW、占比 83.81%。

截至 2024 年底,电网企业累计投运总装机 1.28GW、占比 2.06%,五大发电集团累计投运总装机 15.12GW、占比 24.33%,其他企业单位累计投运总装机 45.74GW、占比 73.61%。

		累计投运		新增投运					
所属集团	座数 总功率 (座) (MW)		总能量 (MWh)	座数 (座)	总功率 (MW)	总能量 (MWh)			
总计	1473	62131.63	141371.77	515	37126. 41	90507.74			
电网企业	135	1277. 51	2457.13	7	327. 56	666.68			
五大发电集团	487	15115. 28	33325.57	158	5868. 09	15041.97			
其他	851	45738.84	105589.08	350	30930.76	74799. 09			

表 1-1 各企业电化学储能电站装机统计表

⁴ 电网企业: 国家电网有限公司、中国南方电网有限责任公司、内蒙古电力(集团)有限责任公司。

⁵ 五大发电集团:中国华能集团有限公司、中国大唐集团有限公司、中国华电集团有限公司、国家电力投资集团公司、国家能源投资集团有限责任公司。

(六) 电站规模分布情况

2024年,新增电站主要是百兆瓦级以上大型电站⁶,总 装机 27.53GW、同比增长 170%以上、装机占比 74.16%。

截至 2024 年底,大型、中型、小型及以下电化学储能电站总装机分别为 40.34GW、21.18GW、0.61GW。百兆瓦级以上大型电站装机占比由 2023 年的 51%提升至 65%,电化学储能逐步向集中式、大型化发展,其应用场景主要为独立储能,占大型电站总装机的 75%。

图 1-8 近 5 年电化学储能规模分布情况

(七)接网电压等级

2024年,新增投运**电化学储能电站主要**接网电压等级为 35kV~110kV、220kV 及以上,合计新增装机占比 97.26%。

截至 2024 年底, 已投运的电化学储能电站主要接网电压等级为 220kV 及以上, 累计投运 31.86GW、占比 51.28%; 其次为 35kV~110kV 电站, 累计投运 27.18GW、占比 43.75%; 并网电压等级 6kV~20kV、220V/380V、未并网电站装机占比

⁶ 小型及以下:储能电站功率 < 5MW; 中型: 5MW ≤ 储能电站功率 < 100MW; 大型:储能电站功率 ≥ 100MW。

分别为 3.41%、1.23%、0.33%。

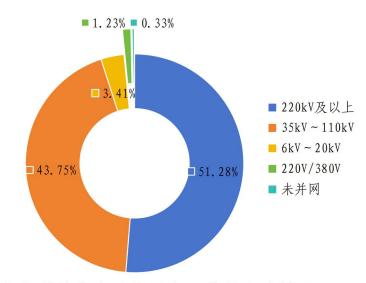


图 1-9 电化学储能电站接网电压等级分布情况

(八) 电池类型分布情况

锂离子电池仍占据已投运电化学储能技术应用主导地位,截至 2024 年底,累计投运的锂离子电池项目总能量 135.76GWh、占比 96.03%(锂离子项目中 99.91%为磷酸铁锂), 其次为铅酸/铅炭电池(2.93%)、液流电池(0.52%)、钠离子电池(0.22%)。

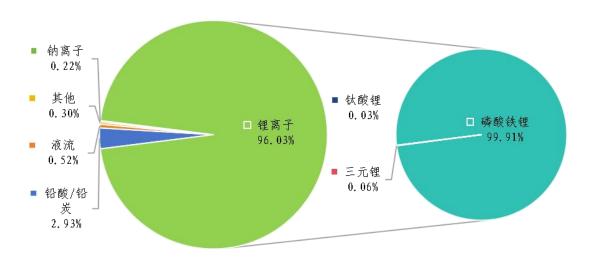


图 1-10 各类电池类型电化学储能项目累计能量分布

(九)主要设备厂商分布情况7

截至 2024 年底,已投运电站装机占比前五位的电池厂商包括宁德时代、比亚迪、亿纬锂能、海辰储能、瑞浦兰钧,总装机能量 33.89GWh、占比 69.59%; 已投运电站装机占比前五位的 BMS 厂商包括高特电子、协能科技、海博思创、比亚迪、阳光电源,总能量 27.31GWh、占比 56.08%; 已投运电站装机占比前五位的 PCS 厂商包括上能电气、科华数据、索英电气、许继电气、国电南瑞,总功率 12.55GW、占比 54.18%;已投运电站装机占比前五位的 EMS 厂商包括德联软件、长园集团、国电南瑞、许继电气、四方股份,总能量 22.25GWh、占比 45.69%;已投运电站装机占比前五位的系统集成商包括海博思创、比亚迪、阳光电源、远景、中车株洲所,总能量18.74GWh、占比 38.48%。

二、电站电力电量情况

(一) 整体电力电量情况

2024年,电化学储能运行情况相较 2023年有较大提升⁸,年均运行小时数 1649h,比 2023年提高约 510h;年均利用小时数⁹911h,比 2023年提升约 300h;年均等效充放电次数 ¹⁰221次(相当于每 1.7天完成一次完整充放电),比 2023年提升约 59次;平均利用率指数¹¹41%,比 2023年提升 14

⁷ 共计 722 座电站报送设备厂商信息,总装机 23.16GW/48.70GWh、占全国电力安全生产委员会企业成员单位已投运总装机的 74%,排名不分先后。

⁸ 统计口径: 仅包括全国电力安全生产委员会企业成员单位,投资或使用或运维的电化学储能电站。

⁹ 利用小时数=统计期间实际传输电量(包括充电量和放电量)折合成额定功率时的运行小时数。

¹⁰ 等效充放电次数=统计期间实际充放电量与 2 倍额定能量的比值,等效充放电次数为 1 则表示按照额定能量完成一次完整的充放电。

¹¹ 利用率指数=统计期间利用小时数与统计期间电站设计充放电小时数比值×100%,利用率指数为100%时则满足电站设计,不含火电配储电站。

个百分点。

(二)应用场景电力电量情况

1. 电源侧储能

2024年,新能源配储整体运行情况好于2023年,年均运行小时数1439h,比2023年提高约642h;年均利用小时数766h,比2023年提高约383h;年均等效充放电次数177次(相当于每2.1天可完成一次完整充放电),比2023年提升约73次;平均利用率指数32%,比2023年提升15个百分点。

2024年, 火电配储整体运行情况较 2023 年略有下降, 年均运行小时数 3894h, 比 2023 年降低约 348h; 年均利用小 时数 1293h, 比 2023 年降低约 125h; 年均等效充放电次数 897 次(相当于平均每天可完成 2 次以上完整充放电), 比 2023 年降低约 118 次。

2. 电网侧储能

2024年,独立储能整体运行情况好于2023年,年均运行小时数1601h,比2023年提高约648h;年均利用小时数995h,比2023年提升约315h;年均等效充放电次数248次(相当于每1.5天完成一次完整充放电),比2023年提升约76次;平均利用率指数52%,比2023年提升14个百分点。

3. 用户侧储能

2024年,工商业配储整体运行情况与 2023年基本持平, 年均运行小时数 4835h,比 2023年降低约 368h;年均利用小 时数 2252h,比 2023年降低约 265h;年均等效充放电次数 332 次(相当于每天可完成一次完整充放电),比 2023 年提升约 15次(工商业配储平均储能时长¹²比 2023 年降低 0.1h);平均**利用率指数** 65%,与 2023 年持平。



图 2-1 典型应用场景下电化学储能年均利用小时数

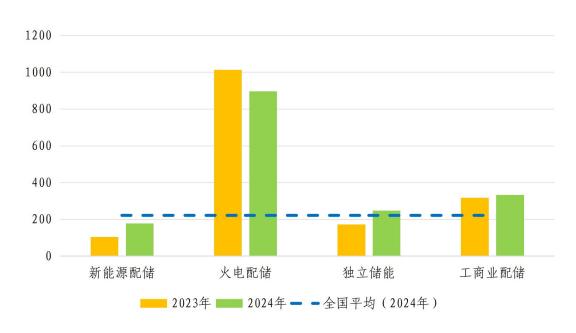


图 2-2 典型应用场景下电化学储能年均等效充放电次数

10

^{12 2023}年、2024年工商业配储平均储能时长分别为 3.7h、3.6h。

(三)区域电力电量情况

2024年,累计投运总功率在 500MW 以上的省份¹³中,浙江、江苏、重庆、新疆、广东、西藏、湖北、宁夏 8 个省份年均利用小时数达到 1000h 以上;年均等效充放电次数排名前五的省份依次为:广东、浙江、江苏、安徽、重庆;平均利用率指数排名前五的省份依次为:广东、浙江、宁夏、青海、江苏。

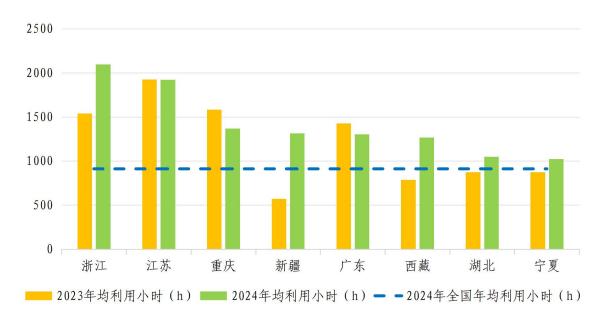


图 2-3 典型区域电化学储能年均利用小时数

分应用场景看,2024年新能源配储累计投运总功率在500MW以上的省份¹⁴中,新疆、西藏平均利用小时数达到1000h以上;年均等效充放电次数排名前五的省份依次为:江西、新疆、安徽、青海、西藏;平均利用率指数排名前五的省份依次为:青海、江西、西藏、甘肃、新疆。

¹³ 累计投运功率 500MW 以上的省份共计 20 个。

¹⁴ 新能源配储累计投运功率 500MW 以上的省份共计 9 个。



图 2-4 典型区域新能源配储年均利用小时数

独立储能累计投运总功率在 500MW 以上的省份¹⁵中,浙江、江苏、甘肃 3 个省份平均利用小时数达到 1500h 以上,广东、重庆、安徽、湖北、河北、河南、宁夏 7 个省份平均利用小时数达到 1000h 以上;年均等效充放电次数排名前五的省份依次为:浙江、江苏、广东、安徽、重庆;平均利用率指数排名前五的省份依次为:广东、浙江、甘肃、江苏、宁夏。

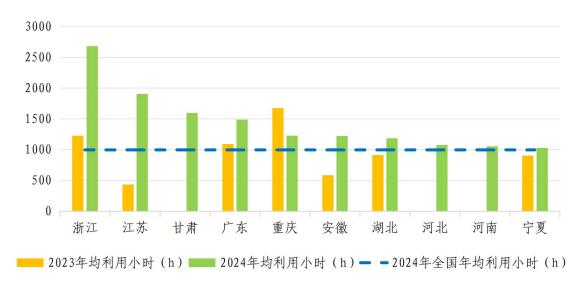


图 2-5 典型区域独立储能年均利用小时数

12

¹⁵ 独立储能累计投运功率 500MW 以上的省份共计 18 个。

三、电站能效情况

(一) 整体能效情况

2024年, 电化学储能总充电电量 8991GWh、总放电电量 7980GWh、平均转换效率 ¹⁶88.75%, 电网侧储能下网电量 ¹⁷4679GWh、上网电量 ¹⁸3823GWh、平均综合效率 ¹⁹81.71%。

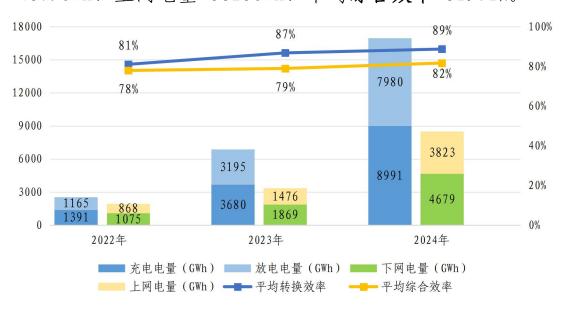


图 3-1 近 3 年电化学储能能效情况

(二) 区域能效情况

2024年,累计投运总功率在 500MW 以上²⁰的省份中,平均**转换效率**排名前五的省份依次为:广西 (92.38%)、湖北 (91.56%)、宁夏(91.11%)、贵州(91.07%)、安徽(90.72%); 电网侧储能累计投运总功率在 500MW 以上²¹的省份中,平均 **综合效率**排名前五的省份依次为: 甘肃 (83.82%)、广西 (83.53%)、河南(83.49%)、安徽(83.46%)、重庆(83.31%)。

¹⁶ 铅酸电池、锂离子电池转换效率=统计期间储能单元总放电量与总充电量的比值;全钒液流电池转换效率=统计期间储能单元净放电量与充电量加上充电过程辅助能耗之和的比值。

¹⁷ 下网电量仅电网侧储能。

¹⁸ 上网电量仅电网侧储能。

¹⁹ 综合效率=统计期间储能电站生产运行过程中上网电量与下网电量的比值,仅电网侧储能。

²⁰ 累计投运功率 500MW 以上的省份共计 20 个。

²¹ 电网侧储能累计投运功率 500MW 以上的省份共计 18 个。

(三) 各投运年限能效情况

结合 2024 年电化学储能电站运行情况可以看出,随着 近年来储能技术的迭代升级,以及投运年限对电站能效的整 体影响,新投运电站的能效水平较好。



图 3-2 2024 年各投运年限下电化学储能电站能效情况

四、电站可靠性情况

2024年电化学储能电站整体安全运行良好,未发生重大安全事故,可用系数²²达 0.98。全年**计划停运** 1723次、单次平均计划停运时长²³58.80h,**非计划停运** 1779次、单次平均非计划停运时长²⁴29.48h。电站关键设备、系统以及集成安装质量问题是导致电站非计划停运的主要原因,非计划停运次数占比达 75%以上。**从投运年限看**,新投运电站运行较不稳定,发生非计划停运占比较高,2024年投运 2 年以内电站

²² 可用系数=统计期间电化学储能电站可用小时数与统计期间小时数的比值,可用小时数=统计期间小时数一计划停运小时数-非计划停运小时数。

²³ 单次平均计划停运时长=统计期间电化学储能电站计划停运小时数与计划停运次数的比值。

²⁴ 单次平均非计划停运时长=统计期间电化学储能电站非计划停运小时数与非计划停运次数的比值。

平均非停次数(2.81次)比投运2年以上(2.01次)的高40%。从利用情况看,电站非停次数跟利用情况没有直接关系。

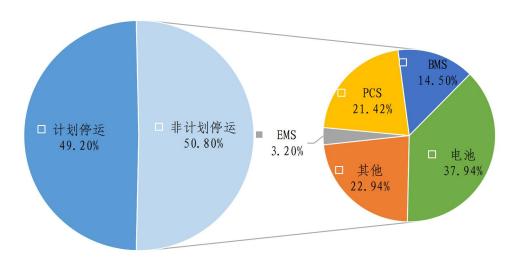


图 4-1 2024 年电化学储能停运次数分布情况



图 4-2 2024 年电化学储能非计划停运情况

五、行业对标情况

结合《电化学储能电站运行评价指标对标技术方案》(试行版),针对运行满1年的电化学储能电站,考虑不同电站规模及不同应用场景,进行关键指标统计,并以相同电站规模及应用场景得分前20%作为标杆。电站基础得分共100分,

最高得分共140分,有关行业对标结果如下。

(一) 新能源配储对标情况

截至 2024 年底, 共计 274 座新能源配储电站运行满 1年。

中升和權	座数				座	座	座	座	座	座	座	座	座	座	座	座	座				平均功	运行	系数	等效充放电	次数(次)	转换	效率	可用	系数	平均	标杆
电站规模		率(MW)	平均值	标杆值	平均值	标杆值	平均值	标杆值	平均值	标杆值	得分	得分																			
0. 5MW ~ 5MW	33	2.95	0.16	0.37	222	296	9 0%	94%	0.99	1.00	80	121																			
5MW ~ 100MW	232	21.73	0. 12	0.18	177	291	87%	92%	0. 98	1.00	83	121																			
100MW 及以上	9	127.09	0.19	-	139	_	86%	_	0.98	_	78	_																			

表 5-1 新能源配储电站平均运行情况

1. 0. $5MW \sim 5MW$

装机在 0.5MW~5MW之间的电站 33座、平均得分 80分。 其中,标杆电站 6座、标杆**得分** 121分,**运行系数**标杆值 0.37、 **等效充放电次数**标杆值 296次(相当于每 1.24 天完成一次 完整充放电)、**转换效率**标杆值 94%、可用系数标杆值 1.00。

$2.5MW \sim 100MW$

装机在 5MW~100MW 之间的电站 232 座、平均得分 83 分。 其中,标杆电站 46 座、标杆**得分** 121 分,**运行系数**标杆值 0.18、**等效充放电次数**标杆值 291 次(相当于每 1.26 天完成一次完整充放电)、**转换效率**标杆值 92%、可用系数标杆值 1.00。

3.100MW 及以上

装机在100MW及以上的电站9座、平均得分78分,运行系数平均值0.19、等效充放电次数平均值139次(相当于每2.63天完成一次完整充放电)、转换效率平均值86%、可

用系数平均值 0.98。

(二) 火电配储对标情况

截至2024年底,共计34座火电配储电站运行满1年。

表 5-2 火电配储电站平均运行情况

电站规模	座数	平均功	运行系数		等效充放电次数(次)		转换效率		可用系数		平均	标杆
电增观侠		t 率(MW)	平均值	标杆值	平均值	标杆值	平均值	标杆值	平均值	标杆值	得分	得分
5MW ~ 100MW	34	16.00	0.45	0. 75	955	1776	87%	92%	0.91	1.00	88	126

1. $5MW \sim 100MW$

装机在 5MW~100MW 之间的电站 34 座、平均得分 88 分。 其中,标杆电站 6座、标杆**得分** 126 分,**运行系数**标杆值 0.75、 **等效充放电次数**标杆值 1776 次(相当于每天完成 4.85 次完整充放电)、转换效率标杆值 92%、可用系数标杆值 1.00。

(三) 独立储能对标情况

截至2024年底,共计63座独立储能电站运行满1年。

电站规模	座数	平均功 率(MW)	运行系数		等效充放电次数(次)		综合效率		可用系数		平均	标杆
			平均值	标杆值	平均值	标杆值	平均值	标杆值	平均值	标杆值	得分	得分
0. 5MW ~ 5MW	1	0.63	0. 08	-	3	-	0%	-	1.00	-	75	-
5MW ~ 100MW	50	81.57	0.16	0.29	222	300	81%	8 3%	0.97	1.00	87	119
100MW 及以上	12	183.00	0.20	0.28	261	381	8 3%	84%	0.97	1.00	77	114

表 5-3 独立储能电站平均运行情况

1. 0. $5MW \sim 5MW$

装机在 0.5MW~5MW之间的电站 1 座、平均得分 75 分, 运行系数平均值 0.08、等效充放电次数平均值 3 次、综合效 率平均值 0%、可用系数平均值 1.00。

$2.5 MW \sim 100 MW$

装机在 5MW~100MW 之间的电站 50座、平均得分 87分。

其中,标杆电站 10座、标杆**得分** 119分,**运行系数**标杆值 0.29、**等效充放电次数**标杆值 300次、**综合效率**标杆值 83%、可用系数标杆值 1.00。

3.100MW 及以上

装机在100MW及以上的电站12座、平均得分77分。其中,标杆电站2座、标杆**得分**114分,运**行系数**标杆值0.28、**等效充放电次数**标杆值381次、**综合效率**标杆值84%、**可用**系数标杆值1.00。

(四) 工商业配储对标情况

截至2024年底,共计49座工商业配储电站运行满1年。

			•			1 1	•																		
电站规模	座数	座	座	座	座	座	座	座	座	座	座	座	座	座甲	平均功	运行系数		等效充放电次数(次)		转换效率		可用系数		平均	标杆
		率(MW)	平均值	标杆值	平均值	标杆值	平均值	标杆值	平均值	标杆值	得分	得分													
0. 5MW ~ 5MW	35	1.43	0.48	0. 62	284	499	86%	87%	0.96	1.00	86	123													
5MW ~ 1 0 0MW	14	13.40	0.63	0.76	366	565	87%	92%	0.97	1.00	85	110													

表 5-4 工商业配储电站平均运行情况

1. 0. $5MW \sim 5MW$

装机在 0.5MW~5MW之间的电站 35座、平均得分 86分。 其中,标杆电站 7座、标杆**得分** 123分,**运行系数**标杆值 0.62、 **等效充放电次数**标杆值 499次(相当于每天完成 1 次以上完整充放电)、转换效率标杆值 87%、可用系数标杆值 1.00。

$2.5 \text{MW} \sim 100 \text{MW}$

装机在 5MW~100MW 之间的电站 14 座、平均得分 85 分。 其中,标杆电站 2座、标杆**得分** 110 分,**运行系数**标杆值 0.76、 **等效充放电次数**标杆值 565 次(相当于每天完成 1.5 次完整 充放电)、**转换效率**标杆值 92%、可用系数标杆值 1.00。